国产精品片aa在线观看_粉嫩一区二区三区国产精品_国产精品一区二区黑丝_久久天堂成人_91丝袜国产在线播放_亚洲女女做受ⅹxx高潮_成人小视频免费在线观看_国产福利91精品

您現在的位置:利達印刷 >> 公司新聞

小麥加工工藝與小麥粉品質之間的關聯


小麥粉的品質包括食用品質、營養品質等。其食用品質分為烘焙品質、蒸煮品質等,由食品的外觀、色澤、結構、紋理、質地、光滑質、口感、彈性、韌性,粘性、氣味等品質指標評定。
小麥粉食用品質
一般來說,影響小麥粉食用品質中口感、質地的主要因素是原料本身的品質,同時加工工藝對其也有一定影響。加工工藝可以控制小麥粉的粗細度,而粗細度包含著損傷淀粉含量的問題。有時,有的面粉廠的產品會出現饅頭發粘、涼后收縮及面條涼后顏色變暗等問題。出現這種現象的原因很多,小麥粉粒度太細、損傷淀粉含量過高是其中原因之一。小麥粉粒度太細、損傷淀粉含量過高是工藝不合理所造成的。淀粉損傷的影響主要有:面團吸水能力增大,同時持水能力下降;對酶的敏感性增強,容易被分解為糊精等。影響淀粉損傷的因素有原料、小麥粉粗細度等。
現代制粉工藝流程具有較鮮明的分層剝刮特點,一般強調垂直流向、輕研細分,各系統的面粉來自小麥胚乳的不同部位,基本能體現胚乳內各部分的組成及性質。本研究以此理論為基礎通過多次在線取樣,分別進行蛋白質、淀粉及相關特性的測定分析找出胚乳各部分蛋白質及淀粉的數量和質量的分布趨勢,為生產中合理配置以生產出更加適合食品制作的小麥粉,提供理論依據。
1、蛋白質數量
國產中筋小麥和混合高筋小麥的蛋白質及濕面筋含量均是以最外層皮磨粉(分別是Ⅳ Bc和VB)為最高(分別為21.15% , 45.91%和14.22%、44.65%),含量最低的分別是IS或1Mc,最高是最低的近2倍。在整個粉路系統中,IV Bc和VB粉是最靠近皮層以及糊粉層的粉,IS和1Mc粉是最接近胚乳中心部分的粉。這表明在小麥胚乳中,最接近皮層的部分蛋白質含量最高小麥胚乳內心部位蛋白質含量最低。從表中還可以看出其它各系統面粉蛋白質分布,從外層向里層(ⅢB, Ⅱ B, ⅠB)含量逐道降低,心磨系統也有越靠近皮層蛋白質含量越高的趨勢。
2、面團流變學特性
(1)吸水率。試驗結果表明,對于吸水率,兩種小麥皮磨和心磨系統的測試樣品均有逐道增加的趨勢最高值均出現在最后一道心磨系統(7、8M和6M)。其原因一是越靠近皮層,樣品蛋白質含量較高,吸水能力較高;另一原因是其損傷淀粉含量較高,也使得吸水率較高。
(2)面團形成時間和穩定時間。從面團形成時間和穩定時間的平均值上分析:國產中筋小麥皮磨系統的形成時問平均值是5.28 min,穩定時間平均值是8.6 min,而混合高筋小麥分別為6.09和9.91min;國產中筋小麥心磨和渣磨系統的形成時間平均值為2.25 min,穩定時間平均值是5.40 min,而混合高筋小麥分別為3.97和7.59 min。由此看出,皮磨系統面粉的總體評價優于心磨和渣磨系統。國產中筋小麥形成時間最低值出現在IB,1M和1T三者的穩定時間也較短。IB和1M粉均來自胚乳的中心部位,這說明這個部位的面粉蛋白質含量較低,質量也并不理想。而形成時間和穩定時間均較高的系統,國產中筋小麥出現在中后路皮磨系統(ⅢB, ⅣB) ,混合高筋小麥出現在中后路皮磨系統(ⅢB, ⅣB)、再篩系統、前路心磨系統,并在ⅢB,Ⅳ處出現最大值,這說明小麥接近外層的胚乳不僅蛋白質含量較高,面團特性也較好。
(3)弱化度。皮磨系統是越靠近皮層弱化度越小,心磨系統的弱化度則較為復雜
(4)拉伸試驗結果。由拉伸曲線分析,國產中筋小麥皮磨系統的拉伸曲線面積平均值是85cm2,拉伸阻力平均值是231.4 EU,延伸度平均值是189.4 mm,拉伸比例平均值是1.80,而混合高筋小麥各項指標分別為116. 1 cm、236.9 EU,212 mm和1.14;國產中筋小麥心磨系統的拉伸曲線面積平均值是62cm2,拉伸阻力平均值是278.2 EU,延伸度平均值是132.9 mm,拉伸比例平均值是2.6,而混合高筋小麥的各項指標分別為77cm2、230 EU、172.3 mm和1.3?傮w上看,進口高筋小麥的皮磨、心磨系統的拉伸曲線面積及延伸度的平均值均高于國產中筋小麥。
從各個系統的數據看,兩組樣品拉伸結果的綜合評價在ⅢB處均有較好結果,這與粉質測定結果是一致的;從各系統綜合評價數據的分布情況看,皮磨系統IB~ⅢB有逐道增強的趨勢,而心磨系統則有逐道減弱的趨勢。
3、淀粉分布及糊化特性
小麥淀粉中淀粉含量、直鏈淀粉含量和糊化特性對面制品的品質有很大影響。研究表明,小麥胚乳中淀粉含量、直鏈淀粉含量及糊化特性主要與小麥的品種、種植環境等因素有關。筆者通過測定小麥胚乳不同部位粉樣的淀粉和直鏈淀粉含量及其糊化特性,旨在了解小麥胚乳直鏈淀粉含量的分布及糊化特性是否有規律。
4、淀粉和直鏈淀粉分布
皮磨系統從工B-ⅣB,它們的淀粉總量和直鏈淀粉含量呈逐漸遞減的趨勢;在心磨系統中,lM-8M粉的淀粉總量和直鏈淀粉含量也有遞減的趨勢。在整個粉路中,Ⅳ和8M粉是最接近小麥皮層的部分,而其直鏈淀粉含量最低。因此可推斷,在小麥胚乳中,越接近皮層的粉樣,其直鏈淀粉的含量越低。對以上結果進行線形相關性分析,皮磨和心磨的結果均較顯著,這說明在小麥胚乳中,淀粉總量和直鏈淀粉含量的分布有一定的規律性。
5、糊化特性
小麥淀粉的糊化溫度為63℃以下,這與以前的研究結果是一致的。而各系統樣品的黏度值都不盡相同,存在較大差異。在皮磨系統中,IB、ⅡB、Ⅳ的黏度值呈逐道下降趨勢,ⅢB粉樣的黏度值較高?傮w上看,整個皮磨系統粉樣的黏度值有一定的下降趨勢。對心磨系統進行了同樣的分析。IM 粗粉樣的黏度值最大,7、8M粉樣的黏度值最小,IM~8M粉樣的黏度值有下降的趨勢。通過對以上結果進行回歸分析,線性相關性顯著。因而推斷,在小麥胚乳中,越接近皮層的粉樣其黏度值越小。
6、出粉率與面粉品質
制粉過程的出粉率是可以人為控制的,不同的出粉率將會表現出不同的品質特性。本試驗在生產線上取得各系統的面粉,并對其麩皮和次粉進行多次取粉,按各系統流量依次配置,混配成出粉率為50%、55%、60%、65%、70%、72%、74%、76%、78%、80%、85%的各樣品。
隨著出粉率的增加面團吸水率增加較為明顯這是因為隨著出粉率的增加,樣品中外層胚乳(后路系統粉)含量增加,蛋白質含量也增加,自然吸水率就會增加;同時后路系統粉損傷淀粉含量也較高,因而也使面團吸水率增大。
看出面團形成時間、粉質質量指數有隨出粉率增加而增大的趨勢,弱化度則相反。在穩定時間方面,出粉率在50%~70%時,穩定時間隨出粉率增加而下降,但在75%附近處有最高峰,除在75%附近處有一高峰外,其他無明顯規律。
拉伸試驗方面,面團的拉伸阻力、最大拉伸阻力有隨出粉率增加而減小的趨勢,延伸度則相反,但這種趨勢并不明顯。拉伸比例方面有隨出粉率增加而減小的趨勢,但在出粉率75%附近處有明顯的高峰,這個現象尚需進一步研究。
在面粉的加工過程中還是要進行一項測試:檢驗面粉中磁性金屬物含量,這個測試有一個標準《GB/T 5509—2008糧油檢驗、粉類磁性金屬物測定》,測試者一個項目的時候一般都是通過儀器來測量的,幾乎沒有用人工去測量,說到儀器測量由不得不提的是磁性金屬測定儀。它是根據最新國家標準GB/T 5509—2008研制的檢驗粉類糧食中磁性金屬物含量的專用儀器,此儀器操作簡單,使用方便,在質量監督、面粉加工、糧食儲運、購銷、科研等部門得天廣泛應用。
小麥粉的品質包括食用品質、營養品質等。其食用品質分為烘焙品質、蒸煮品質等,由食品的外觀、色澤、結構、紋理、質地、光滑質、口感、彈性、韌性,粘性、氣味等品質指標評定。 

  小麥粉食用品質 

  一般來說,影響小麥粉食用品質中口感、質地的主要因素是原料本身的品質,同時加工工藝對其也有一定影響。加工工藝可以控制小麥粉的粗細度,而粗細度包含著損傷淀粉含量的問題。有時,有的面粉廠的產品會出現饅頭發粘、涼后收縮及面條涼后顏色變暗等問題。出現這種現象的原因很多,小麥粉粒度太細、損傷淀粉含量過高是其中原因之一。小麥粉粒度太細、損傷淀粉含量過高是工藝不合理所造成的。淀粉損傷的影響主要有:面團吸水能力增大,同時持水能力下降;對酶的敏感性增強,容易被分解為糊精等。影響淀粉損傷的因素有原料、小麥粉粗細度等。 

  現代制粉工藝流程具有較鮮明的分層剝刮特點,一般強調垂直流向、輕研細分,各系統的面粉來自小麥胚乳的不同部位,基本能體現胚乳內各部分的組成及性質。本研究以此理論為基礎通過多次在線取樣,分別進行蛋白質、淀粉及相關特性的測定分析找出胚乳各部分蛋白質及淀粉的數量和質量的分布趨勢,為生產中合理配置以生產出更加適合食品制作的小麥粉,提供理論依據。 

  1、蛋白質數量 

  國產中筋小麥和混合高筋小麥的蛋白質及濕面筋含量均是以最外層皮磨粉(分別是Ⅳ Bc和VB)為最高(分別為21.15% , 45.91%和14.22%、44.65%),含量最低的分別是IS或1Mc,最高是最低的近2倍。在整個粉路系統中,IV Bc和VB粉是最靠近皮層以及糊粉層的粉,IS和1Mc粉是最接近胚乳中心部分的粉。這表明在小麥胚乳中,最接近皮層的部分蛋白質含量最高小麥胚乳內心部位蛋白質含量最低。從表中還可以看出其它各系統面粉蛋白質分布,從外層向里層(ⅢB, Ⅱ B, ⅠB)含量逐道降低,心磨系統也有越靠近皮層蛋白質含量越高的趨勢。 

  2、面團流變學特性 

 。1)吸水率。試驗結果表明,對于吸水率,兩種小麥皮磨和心磨系統的測試樣品均有逐道增加的趨勢最高值均出現 在最后一道心磨系統(7、8M和6M)。其原因一是越靠近皮層,樣品蛋白質含量較高,吸水能力較高;另一原因是其損傷淀粉含量較高,也使得吸水率較高。 

 。2)面團形成時間和穩定時間。從面團形成時間和穩定時間的平均值上分析:國產中筋小麥皮磨系統的形成時問平均值是5.28 min,穩定時間平均值是8.6 min,而混合高筋小麥分別為6.09和9.91min;國產中筋小麥心磨和渣磨系統的形成時間平均值為2.25 min,穩定時間平均值是5.40 min,而混合高筋小麥分別為3.97和7.59 min。由此看出,皮磨系統面粉的總體評價優于心磨和渣磨系統。國產中筋小麥形成時間最低值出現在IB,1M和1T三者的穩定時間也較短。IB和1M粉均來自胚乳的中心部位,這說明這個部位的面粉蛋白質含量較低,質量也并不理想。而形成時間和穩定時間均較高的系統,國產中筋小麥出現在中后路皮磨系統(ⅢB, ⅣB) ,混合高筋小麥出現在中后路皮磨系統(ⅢB, ⅣB)、再篩系統、前路心磨系統,并在ⅢB,Ⅳ處出現最大值,這說明小麥接近外層的胚乳不僅蛋白質含量較高,面團特性也較好。 

 。3)弱化度。皮磨系統是越靠近皮層弱化度越小,心磨系統的弱化度則較為復雜 

  (4)拉伸試驗結果。由拉伸曲線分析,國產中筋小麥皮磨系統的拉伸曲線面積平均值是85cm2,拉伸阻力平均值是231.4 EU,延伸度平均值是189.4 mm,拉伸比例平均值是1.80,而混合高筋小麥各項指標分別為116. 1 cm、236.9 EU,212 mm和1.14;國產中筋小麥心磨系統的拉伸曲線面積平均值是62cm2,拉伸阻力平均值是278.2 EU,延伸度平均值是132.9 mm,拉伸比例平均值是2.6,而混合高筋小麥的各項指標分別為77cm2、230 EU、172.3 mm和1.3?傮w上看,進口高筋小麥的皮磨、心磨系統的拉伸曲線面積及延伸度的平均值均高于國產中筋小麥。 

  從各個系統的數據看,兩組樣品拉伸結果的綜合評價在ⅢB處均有較好結果,這與粉質測定結果是一致的;從各系統綜合評價數據的分布情況看,皮磨系統IB~ⅢB有逐道增強的趨勢,而心磨系統則有逐道減弱的趨勢。 

  3、淀粉分布及糊化特性 

  小麥淀粉中淀粉含量、直鏈淀粉含量和糊化特性對面制品的品質有很大影響。研究表明,小麥胚乳中淀粉含量、直鏈淀粉含量及糊化特性主要與小麥的品種、種植環境等因素有關。筆者通過測定小麥胚乳不同部位粉樣的淀粉和直鏈淀粉含量及其糊化特性,旨在了解小麥胚乳直鏈淀粉含量的分布及糊化特性是否有規律。 

  4、淀粉和直鏈淀粉分布 

  皮磨系統從工B-ⅣB,它們的淀粉總量和直鏈淀粉含量呈逐漸遞減的趨勢;在心磨系統中,lM-8M粉的淀粉總量和直鏈淀粉含量也有遞減的趨勢。在整個粉路中,Ⅳ和8M粉是最接近小麥皮層的部分,而其直鏈淀粉含量最低。因此可推斷,在小麥胚乳中,越接近皮層的粉樣,其直鏈淀粉的含量越低。對以上結果進行線形相關性分析,皮磨和心磨的結果均較顯著,這說明在小麥胚乳中,淀粉總量和直鏈淀粉含量的分布有一定的規律性。 

  5、糊化特性 

  小麥淀粉的糊化溫度為63℃以下,這與以前的研究結果是一致的。而各系統樣品的黏度值都不盡相同,存在較大差異。在皮磨系統中,IB、ⅡB、Ⅳ的黏度值呈逐道下降趨勢,ⅢB粉樣的黏度值較高?傮w上看,整個皮磨系統粉樣的黏度值有一定的下降趨勢。對心磨系統進行了同樣的分析。IM 粗粉樣的黏度值最大,7、8M粉樣的黏度值最小,IM~8M粉樣的黏度值有下降的趨勢。通過對以上結果進行回歸分析,線性相關性顯著。因而推斷,在小麥胚乳中,越接近皮層的粉樣其黏度值越小。 

  6、出粉率與面粉品質 

  制粉過程的出粉率是可以人為控制的,不同的出粉率將會表現出不同的品質特性。本試驗在生產線上取得各系統的面粉,并對其麩皮和次粉進行多次取粉,按各系統流量依次配置,混配成出粉率為50%、55%、60%、65%、70%、72%、74%、76%、78%、80%、85%的各樣品。 

  隨著出粉率的增加面團吸水率增加較為明顯這是因為隨著出粉率的增加,樣品中外層胚乳(后路系統粉)含量增加,蛋白質含量也增加,自然吸水率就會增加;同時后路系統粉損傷淀粉含量也較高,因而也使面團吸水率增大。 

  看出面團形成時間、粉質質量指數有隨出粉率增加而增大的趨勢,弱化度則相反。在穩定時間方面,出粉率在50%~70%時,穩定時間隨出粉率增加而下降,但在75%附近處有最高峰,除在75%附近處有一高峰外,其他無明顯規律。 

  拉伸試驗方面,面團的拉伸阻力、最大拉伸阻力有隨出粉率增加而減小的趨勢,延伸度則相反,但這種趨勢并不明顯。拉伸比例方面有隨出粉率增加而減小的趨勢,但在出粉率75%附近處有明顯的高峰,這個現象尚需進一步研究。 

  在面粉的加工過程中還是要進行一項測試:檢驗面粉中磁性金屬物含量,這個測試有一個標準《GB/T 5509—2008糧油檢驗、粉類磁性金屬物測定》。 
無紡布面粉袋  http://www.xokeji.cn
 


【上一個】 饅頭品質評價及影響的主要因素 【下一個】 偶氮甲酰胺該不該用于面粉增筋?

定興縣利達印刷有限公司 冀ICP備13007836號    傳真:0312-6876466    地址:河北省保定市定興縣固城鎮臺上網站地圖

国产精品夫妻自拍| 欧美日韩综合在线| 中文字幕免费不卡在线| 天天影视涩香欲综合网| 婷婷亚洲一区二区三区| 91精品久久久久久9s密挑| 久久久久久免费| 一二三四社区在线视频| 日韩香蕉视频| 欧美一区二区三区成人| 在线日韩影院| 亚洲成年人在线播放| 4438全国亚洲精品观看视频| 在线播放毛片| 在线观看h网| 91蜜桃在线视频| 免费一区二区三区视频导航| 黄色片网站在线| 一本色道久久综合亚洲91| 国产日韩中文在线中文字幕| 黑人狂躁日本妞一区二区三区 | av高清一区| 韩日av一区二区| 亚洲啪啪aⅴ一区二区三区9色| 欧美日韩精品在线播放| 丁香啪啪综合成人亚洲小说| 天天影视欧美综合在线观看| 欧美一卡二卡在线| 久久婷婷国产| 成人精品福利| 欧美性生活影院| 欧美日韩精品在线播放| 日韩av地址| av资源网在线播放| 日本动漫理论片在线观看网站| h色视频在线观看| av在线天堂播放| 亚洲va国产va欧美va观看| 成人在线免费观看91| 色视频在线观看| 毛片免费在线播放| 欧美tickling网站挠脚心| 精品成人自拍视频| 久久最新网址| 99精品热视频只有精品10| 精品福利在线看| 国产大片在线免费观看| 免费观看成人av| 电影一区二区三区| 伊人久久综合| 性欧美1819sex性高清大胸| 亚洲自拍偷拍av| 日本一二三四高清不卡| 国产精品粉嫩av| jizz性欧美10| 9.1麻豆精品| blacked蜜桃精品一区| 国产精品成久久久久| 日韩欧美国产一区在线观看| 精品国产欧美一区二区| 国产精品系列在线| 午夜视频久久久久久| 69视频在线观看| 欧美三级伦理在线| ...av二区三区久久精品| 欧美freesex8一10精品| 日韩精品视频无播放器在线看 | 美女尤物国产一区| 三级小说欧洲区亚洲区| 中文字幕免费高清电视剧网站在线观看| 丝袜美腿亚洲综合| 精品一区二区免费在线观看| 欧美日韩中文另类| 精品日韩在线一区| 国产福利在线观看| 视频一区二区三区在线| 亚洲欧美久久| 国产在线观看一区二区| 国产精品你懂的在线| 在线免费福利| 国产乱码精品一区二区三| 午夜久久福利影院| 成人综合网站| 国产亚洲人成a在线v网站 | 99成人免费视频| 国产精品久久久久久久裸模| 日韩欧美999| 精品一区二区三区香蕉蜜桃 | 欧美特黄色片| 欧美在线色图| 91九色精品| 精品久久久久久中文字幕一区奶水 | 欧美成人精品午夜一区二区| 免费在线观看黄色| 最新电影电视剧在线观看免费观看| 国产精品一区免费在线 | 国产蜜臀av在线一区二区三区| 亚洲欧美中文日韩在线v日本| 精品国产麻豆| 国产一区二区视频在线| 亚洲国产精品免费| 成年人黄色电影| 日韩午夜黄色| 日韩精品一区二区三区在线观看 | 18video性欧美19sex高清| 日本激情视频网| 尤物视频免费在线观看| 日本五码在线| 国产精品美女| 亚洲黄色成人| 国产xxx精品视频大全| 岛国精品在线观看| 中文字幕资源网在线观看| 99成人在线| 91精品国产高清一区二区三区蜜臀| 欧美一区 二区| 91传媒视频在线播放| 国产日韩欧美一区二区三区乱码| 麻豆久久久久久| 色系网站成人免费| av在线app| 亚洲午夜91| 中文字幕亚洲电影| 91黄色在线| 亚洲狠狠丁香婷婷综合久久久| 日韩理论片中文av| 中文字幕精品一区二区精品绿巨人 | 国产精品tv| 国产剧情在线| 国产激情偷乱视频一区二区三区| 亚洲综合社区| 欧美一级艳片视频免费观看| 嗯用力啊快一点好舒服小柔久久| 成人国产亚洲欧美成人综合网| 99国产精品| 婷婷丁香激情综合| av黄色在线观看| 性xx色xx综合久久久xx| 日韩成人网免费视频| 欧美精品免费视频| 日韩欧美中文字幕一区| **精品中文字幕一区二区三区| 久久久久久久久久久电影| 老司机福利在线视频| 日韩成人精品一区二区| 超碰在线影院| 欧美第一精品| 蜜桃麻豆av在线| 中文在线免费| 精品久久影院| 午夜电影网一区| av电影院在线看| av动漫一区二区| 国产精品一区二区免费不卡| 精品99久久久久久| 中国女人久久久| 成人短视频软件网站大全app| 二个人看的毛片| 国产精品视频一二三区| 亚洲伦伦在线| 第一视频专区在线| 黑人巨大精品欧美一区| 精品亚洲二区| 狠狠干在线视频| 3d欧美精品动漫xxxx无尽| 一级做a爱片久久| 日本精品视频一区二区| 五月激情丁香一区二区三区| 青青操在线视频| 一区二区三区四区在线播放| 国产精品三级| youjizz亚洲| 亚洲国产激情| www.成人精品免费网站青椒| 国产成人综合网| 精品亚洲a∨一区二区三区18| 精品国产精品一区二区夜夜嗨| 蜜桃久久av| 精品久久中文字幕久久av| 91日韩一区二区三区| 羞羞视频在线免费国产| 中文字幕欧美三区| 欧美性理论片在线观看片免费| 欧美日韩精品在线| 欧美日韩精品在线一区| 日本天堂影院在线视频| 欧美日韩大陆一区二区| 黄色软件在线| 亚洲婷婷伊人| 久久嫩草精品久久久精品| 一区二区三区在线免费看| 日韩欧美高清一区| 中文字幕在线一区二区三区| 国产精品久久天天影视| 豆花视频一区| 岛国在线视频网站| 日韩精品一区在线| 波多野结衣视频一区| 久久av影视| 色呦呦在线视频|